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Abstract—Many years have passed since the first path 
planning algorithm was found. These algorithms have evolved 
a lot since then. Even the best of the path finding algorithms 
were incapable to give the ideal result which was needed to 
find the path. Especially in terrains where the algorithms 
couldn’t overcome the obstacle because that situation wasn’t 
predicted beforehand. The ideal path was found using trial 
and error methods after the unpredicted events led to the 
collision of the robot. This problem was resolved when the 
robots gained the ability to outperform itself in these 
situations by learning what went wrong on its own and 
making sure the exact same event doesn’t occur again. These 
machine learning algorithms emerged in the past decade and 
were continuously improvised and were perfected to have a 
very high success rate. In this survey of the path finding 
algorithms, the timeline and the working of algorithms and 
how these algorithms have developed and improvised over 
time can be seen.  
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I. INTRODUCTION

Navigation of rovers can be defined as the 
amalgamation of the three fundamental competences which 
need to be achieved by the rover in real time. 

 Self-localisation

 Path finding

 Map interpretation

 Actuation

Self-localization is a state where the robot makes
complete sense of the environment around it and is familiar 
with what is around it in extensively. 

The path finding subsystem is responsible for finding 
an optimal traversable path from the start point to the end 
point. This includes the steps taken in a particular direction 
using the entire sequence of actions and rewards. 

The map-interpretation used to explain the algorithms 
in this paper have simple representations which may 
consist of either a single value or a single pair of values. 
Complex representations are also used which include high 
end graphical model and geometric maps of the 
environment 

Actuation is where the robot reacts on the environment 
based on the above two processes. This involves the robot 
physically moving in certain directions that in turn modify 

the physical relationship between the robot and the 
environment in is in and represented in. 

As you can see the above components of path finding 
are all co related to each other. In this paper, focus is on 
the finding subsystems. 

II. METHODS THAT ARE NOT PATH-PLANNING

The intent of this paper is to examine the differences 
between the classical path planning algorithms and the 
algorithms that use machine learning in order to traverse 
through the environment to reach the goal state from the 
start. Path planning is sometimes confused with these 
machine learning algorithms. These two ways of path 
finding aren’t the same. Therefore, the need to distinguish 
between what actual path planning is and how it’s done 
and what are machine learning path planning algorithms 
and how they are done. 

III. PATH PLANNING: ALGORITHMS

Path planning algorithms find the path from the start to 
the end autonomously and monotonously by finding a set 
sequence of actions and decisions based on the 
representation given. These sequences are decided by the 
algorithm based on the representation of the map present. 
These algorithms are usually designed for certain type of 
environments suitable for the algorithm to function. This is 
a reason why there are so many more path planning 
algorithms than machine learning algorithms. 

A. Dijkstra’s algorithm

Dijkstra’s algorithm is the most basic path planning
algorithm available. This was the very first of the path 
planning algorithms. The algorithm achieves the shortest 
path to the destination using a set of visited and unvisited 
nodes and values assigned to each node. 

1. The node at which we are starting at as the initial
node is called. The following nodes say Y will be the 
distance of that node from the initial node. 

2. The first initialization is the tentative distance
values of all the nodes to infinity except the initial node 
which will be initialized to 0. 

3. The initial node is now marked as current and all
the other nodes are added to a newly created set and name 
it as the unvisited node set. 
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4. For the current node, consider all the unvisited 
nodes around that node and calculate their tentative 
distance. Compare the newly calculated tentative distance 
to the current assigned value and assign the smaller value 
to the node. If the node isn’t connected to the current node, 
leave the node as is. 

5. When all the nodes around the current node are 
check, mark the current node as visited and remove it from 
the unvisited set. 

6. If the destination node is marked as visited or if 
the destination node is not traversable, then stop. 

7. If not, select he next unvisited node from the set 
of unvisited nodes and mark it as the current node and 
return to step 4. 

B. A* algorithm 

A* is an informed search algorithm, it is the most 
favorable path finding algorithm because it’s very flexible 
and can find paths in a variety of different situations 
effortlessly. It is largely based on the Dijkstra’s algorithm 
and uses a heuristic search to guide itself to find the 
shortest path. The secret to its high success rates is that it 
uses the best features of the Dijkstra’s search i.e. it favors 
the vertices closest to the starting point and the best 
features from the greedy best-first-search i.e. favoring the 
vertices closest to the goal. In the usual terminology while 
using A* algorithm, g(n) is used to denote the exact cost of 
traversal from the current vertex to any other vertex n on 
the given representation, and h(n) to denote the heuristic 
estimated cost from the vertex n to the goal. While the A* 
search is run, it balances both these values by finding the 
lowest f(n) value with n being the value of the next vertex 
and f(n) = g(n) + h(n). 

The algorithm puts all the vertices present, in a 
list called the open list which lets the algorithm know that 
the vertices in that list aren’t traversed yet. While 
traversing through the vertices that the algorithm chooses, 
the algorithm puts the vertices traversed in the closed list 
so that these vertices won’t be traversed again. The vertices 
not traversed will remain in the open list. 
 
Additionally, if the heuristic becomes very monotonous, a 
closed set of nodes already traversed before may be used in 
order to make the search for the goal vertex more efficient. 

C. LPA* Algorithm 

The Lifelong Planning a* algorithm has been 
developed with a specific type of path finding in mind. 
This kind of pathfinding has the start and the goal state as 
the same points but the actual path finding is performed by 
changing the representation of the path. If the number of 
changes is comparatively small, then it is more efficient to 
repair the existing search tree than to perform the search 
from the start again. If the given search tree is as the one 
required for this algorithm then, the Lifelong Planning A* 
can be implemented by reinserting the vertices into the 
open-list of all nodes with the modified edge costs or 
connectivity. These changes can be then sent to the 
algorithm through the search tree as always. The lifelong 

planning stores the search tree structure not with pointer 
but with the cost of the values from these vertices to the 
goal state. When the algorithm reaches the start node, the 
path is then returned. 

D. D* lite algorithm 

The Dynamic A* or the D* algorithm is very similar to 
the Lifelong Planning A* algorithm, except that the start 
node here is allowed to change in-between searches. 
Similar to the LPA* the edge costs are allowed to change 
here too. In this algorithm, the more traditional notion of 
explicitly updating the back pointers is used as opposed to 
the one used in lifelong planning A* which is the implicit 
search-tree. This algorithm is the modified version of the 
D* and was developed almost a decade later which again 
used the implicit search-tree representation. Since then 
algorithms use the word ‘lite’ to describe algorithms with 
the implied search-tree representation. 

 This algorithm is widely used for robot navigation 
which run with the help of sensors. Hence the algorithm 
selects the best path visible to the robot and the path it is 
going to traverse in the near future. But the goal state is 
always rooted for obvious reasons. Hence the changes that 
the algorithm makes can only affect the edge structure or 
the cost of the edges which is farther away from the goal. 
Therefore, the changes made only affect the outer branches 
of the search-tree and most of the search tree need not be 
modified. Like the A* the D* also takes up quite a lot of 
time to compute the initial path to traverse, but the 
subsequent searches are much faster. In a long run, the D* 
can reduce in magnitude when compared to the A*. This 
allows the representations to ink out larger pieces of the 
representation and this representation can be modeled at a 
higher resolution. 
 

E. Field D* 

Graph search techniques such as Dijkstra A* and D* 
algorithms find the optimal path to the goal using graph 
representation which is two dimensional 4- or 8- connected 
structure. The movement is broken into horizontal and 
vertical movements i.e. are 90 degree turns whereas in 8- 
connected it is decomposed to 45 degree turns. In a 
uniform map, the path that occurs on a 4-connectred(8-
connected) graph, there are usually many optimal paths 
having the same costs to traverse. These paths alternate 
between horizontal and vertical movements. While the 
former is globally suboptimal the latter is suboptimal 
locally. However, from the set of given optimal paths, 
finding the best w.r.t. the real world is computationally 
infeasible.  Usually the common solution for this is to 
break ties by moving towards the goal but this technique 
fails if there is an obstacle in the path. The Field D* avoids 
the problem of tie-breaking by operating in a continuous 
environment that envelopes the 4-connected or 8-
connected graph. The graph nodes present in this system 
are contained as discrete sampling over a continuous field 
for the distance cost to be calculated which is required to 
reach the goal. The Field D* operates similar to the D* lite 
algorithm, except that the calculation of the cost from the 
vertex to the goal for continuous points on a graph is done 
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using a linear interpolation between these cost values of 
the edges two end nodes. This allows the paths planned to 
follow the trajectories in the continuous domain. This 
algorithm is assumed to be implemented in a ‘lite’ 
environment which was mentioned earlier. Here, the edges 
are not explicitly followed, although in an 8-connected 
structure the edges is used to determine how the 
relationship between the node values and the field values 
and how they were calculated. 

IV. MACHINE LEARNING: ALGORITHMS 

A. Reinforcement Learning 

These algorithms are machine learning algorithms 
which teach the system to take appropriate actions based 
on the concept of rewards and punishments. This world in 
which this system exists is assumed as the Markov 
decision process or MDP. The reinforcement learning 
principle was derived from this system. Although this 
algorithm doesn’t explicitly model the MDP, these still are 
in this system and are called as the model-free methods. 
When a particular action is performed are a particular state, 
the probability distribution created with the system is 
called a policy. The system is allowed to modify its policy 
w.r.t. the rewards and/or punishments it receives. 
Punishments are also called are negative rewards. Usually 
the policy is computed by using the sum of the immediate 
reward from a particular action and the discounted sum of 
all the rewards that are eventually received after the 
original action was chosen. The drawback of this algorithm 
is that the system is trained to perform like an expert in the 
path planning process. This can pose to be a threat because 
of the policy based learning system. 
 

B. Classical Q Learning 

 The Classical Q-Learning algorithm (CQL) like 
the reinforced learning algorithm gets the results by using 
the concept of the reward system. This is done by taking 
into account the rewards that the system will receive in the 
future, that are because of the actions taken by the system 
previously. This makes the algorithm better as it takes into 
account the fact that some actions that are optimal locally 
are sub optimal globally. The future rewards that are taken 
into consideration are subtracted with the value γ to 
account the uncertainty of it actually happening. The Q in 
the Q-Learning comes from the representation of the sum 
of the reward to be received from performing a particular 
action. Taking an assumption that there is a Q-table present 
with all the possible Q values, the largest of these Q values 
at every step is chosen. These Q values are obtained by 
repeated interaction with the environment. 

The CQL requires a memory of (n × m) to keep 
track of the Q-table. The drawback in this method is that 
for large values of n, the space complexity is high. This is 
revised in the IQL algorithm, were an attempt was made to 
reduce this space complexity.  

C. Improverd Q Learning 

In the IQL algorithm presented here, involves having n 
Boolean variables called Lock for n states to indicate 

whether Q (S, a) at state S due to action a need to be 
updated. The Lock variables are used to avoid unnecessary 
update of entries Q (S, a) in the Q-table and, thus, to save 
time complexity. Beside this, in IQL, there is a requirement 
of n-memories to store n-Lock variables associated with n 
states. Here, instead of the Q-table of n × m dimension, 
there is a requirement to store the best Q-value of a state 
because of any action and thus require n-memories for n 
best Q-values of n states. This is denoted by Li. 
 

In this path-planning algorithm, the environment is 
made up of states just like that of the CQL algorithm. A 
state can have four neighbors. Consequently, the next best 
action to make the next move for the robot is achieved by 
selecting the largest Q-value. This continues till the goal 
state is achieved. 

 
In the initialization phase of the algorithm, there exists a 
lock variable at all states except the goal state which is set 
to zero. The immediate reward from any neighboring state 
to the goal state is set to a certain constant value and 
discounting factor for estimating the uncertainty is set to γ 
and the initial state of the algorithm are fixed up. 
 
In the present updated update policy of the IQL Q-table, 
the lock state L is initialized to 1 and the Q-Table isn’t 
modified unless the current state or the next state is the 
goal state. 
In order, to reach the goal state, the robot usually has to 
traverse in the environment for a finitely large number of 
iterations. To avoid the unnecessary modification of the Q-
table update, a small repeat-until loop between the two 
main phases of the program is added. This loop continues 
selecting an action and executing it (without updating the 
Q-table) until the robot reaches the goal. Once the robot 
reaches the goal, the first repeat-until loop exits, and the Q-
table updating is initiated. The process of Q-table updating 
is continued until all the states are locked. 

V. CONCLUSION 

In this survey and analysis of all these algorithms gives an 
idea and an understanding of the flow of the creation and 
implementations of the algorithms and how these 
algorithms were modified and bettered as time passed and 
how they were modified for different situations and 
predicaments. Also, there an increase in the artificial 
intelligence in every algorithm as we go through the flow 
of the paper.  

Despite these algorithms being intelligent, there 
were better ways to find paths, faster ways, ways with 
which we do not even need an algorithm. Ways which 
were intelligent enough to learn and become more 
intelligent on its own. These algorithms are better than the 
path planning algorithms as they hardly take up space on 
the computer. Even though they need to run for a set 
number of times to start off the learning process, they are 
the fastest way to find a path after this learning process is 
done. These machine learning concept uses the Q-learning 
way of defining the states and rewards to find this path. 
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This classical approach was further optimised and 
structured to outperform the previous version. 

Now that there’s a new way of path planning, i.e. 
by finding a dynamic self-customised path spontaneously, 
there is no need of having algorithms on the computer to 
find paths. The use of the IQL uses only a table of Q-
values with which the path is found which uses only a 
quarter of the space a normal algorithm may use.  These 
new ways of finding the paths not only save time and 
energy but also save a lot of space on on-board computer 
on robots which usually have limited data space and 
memory. 
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